A Ruthenium(II) Dinitrogen Complex

By J. E. FERGUSSON* and J. L. LOVE

(Department of Chemistry, University of Canterbury, Christchurch, New Zealand)

WE present evidence for the existence of a tetrammine dinitrogen complex of ruthenium(II) viz. [Ru(NH₃)₄(N₂)₂]-Br, similar to that found for osmium¹ and more stable than the ruthenium(II) complex [Ru en₂(N₂)₂] (Ph₄B)₂ recently reported.2

It has been shown³ that the formation of $[Ru(NH_3)_5N_2]^{2+}$ from ruthenium(III) and hydrazine hydrate gives a product contaminated with up to 50% of a ruthenium-amminehydrazine complex. In an attempt to isolate a pure hydrazine complex, we carried out reactions at low temperatures and obtained small amounts of a dinitrogen complex, probably [Ru(NH₃)₄(N₂)₂]Br₂, together with [Ru(NH₃)₅N₂]-Br₂ and a ruthenium(II)-hydrazine product.

Treatment of [Ru(NH₃)₅Cl]Cl₂ or cis-[Ru(NH₃)₄Cl₂]Cl with hydrazine hydrate at -23° for 1 hr. or 10 min., respectively, gave an oily product on the addition of sodium bromide. From its i.r. spectrum, the oily compound appears to be a ruthenium(III)-ammine-hydrazine complex. The i.r.-active mode $\delta(NH_3)$ sym is at 1310 cm.⁻¹ and $\rho r(NH_3)$ is at 810 cm.⁻¹, typical of a ruthenium(III) ammine complex;⁴ in addition, strong bands at 1115 and 955 cm.⁻¹ are due to co-ordinated hydrazine.^{5,6} The product also contains a little of the complex $[Ru(NH_2)_5N_2]$ -Br₂ as indicated by the sharp band in the i.r. spectrum at 2110 cm.-1.7

The oily compound decomposes at room temperature and gives rise to two additional sharp bands in the i.r. region at 2220 and 2185 cm.-1, similar in position to the bands assigned to $\nu(N=N)$ in $[\operatorname{Ru} en_2(N_2)_2]^{2+,2}$ If water is added to the original reaction mixture at -23° , followed by sodium bromide, a solid material is obtained which has the same three sharp bands in the i.r. spectrum. In addition, the i.r. spectrum contains bands typical of ammonia coordinated to ruthenium(11)⁴ [δ (NH₃)sym at 1240 cm.⁻¹, $\rho r(NH_3)$ at 760 cm.⁻¹] and bands due to co-ordinated hydrazine. The two weak bands at 2220 and 2185 cm.⁻¹ decrease slightly in intensity over a period of three days.

The results suggest that the reaction at -23° gives a ruthenium(III)-ammine-hydrazine complex which decomposes at higher temperatures, or on the addition of water at room temperature, to give a mixture of at least three products $[Ru(NH_3)_4(N_2)_2]^{2+}$, $[Ru(NH_3)_5N_2]^{2+}$, and a ruthenium(II)--ammine-hydrazine complex.

A similar reaction carried out on [Ru en₂Cl₂]Cl did not give a dinitrogen complex, suggesting that the tetrammine dinitrogen complex is the more thermally stable of the two. The much slower rate of disappearance of the two bands (2220 and 2185 cm.⁻¹) in the i.r. spectrum of $[Ru(NH_3)_4(N_2)_2]^{2+}$ compared with their loss for $[\operatorname{Ru} en_2(N_2)_2]^{2+1}$ supports this contention.

(Received, March 3rd, 1969; Com. 306.)

- ¹ H. A. Scheidegger, J. N. Armor, and H. Taube, J. Amer. Chem. Soc., 1968, 90, 3263.
 ² L. A. P. Kane-Maguire, P. S. Sheridan, F. Basolo, and R. G. Pearson, J. Amer. Chem. Soc., 1968, 90, 5295.
 ³ J. Chatt, R. L. Richards, J. E. Fergusson, and J. L. Love, Chem. Comm., 1968, 1522.
 ⁴ A. D. Allen and C. V. Senoff, Canad. J. Chem., 1967, 45, 1337.
 ⁵ K. Brodersen, Z. anorg. Chem., 1957, 290, 24.
 ⁶ A. Braibanti, F. Dallavalle, M. A. Pellinghelli, and E. Leporate, Inorg. Chem., 1968, 7, 1430.
 ⁷ A. D. Allen, F. Bottomley, R. D. Harris, V. P. Reinsalu, and C. V. Senoff, J. Amer. Chem. Soc., 1967, 89, 5595.